SYSTEM ARCHITECTURE BRIEFING

Agentic Swarms for Developer
Productivity

Stop Babysitting LLMs, Start Shipping

?

Steven Zimmerman, CPA

@EffortlessSteven

CODE IS CHEAP: TRUSTED CHANGE IS NOT

| TOKENS & CI SENIOR ATTENTION

Cheap Scarce
 Parallel Serial
e Predictable line item e Expensive

| * Infinite scale Finite capacity

‘ EFFORTLESS_METRICS // AGENTIC_SWARMS ‘ ‘ ‘ ‘ ‘ ‘ : : 2

The bottleneck was always
“can we trust this change?”

The bottleneck was always
“can we trust this change?”

Al just ripped the mask off.

OLD METRICS ARE BROKEN IN AI-NATIVE
REPOS

e PR count and LOC velocity are meaningless in Al-native repos.
« You can maximize both by turning quality down and deleting tests.

o If your metric can be gamed by quietly deleting fests,
it’s not a real metric.

EFFORTLESS_METRICS // AGENTIC_SWARMS

COST MODEL: HUMAN VS SWARM

$150—%$250/hour (fully loaded) $1—9$5 per Flow 3 run
o Fragmented attention (15—30 min e 30—90 min grinding in background
blocks) & Parallel, scalable
|« Serial, finite | | | |

‘ EFFORTLESS_METRICS // AGENTIC_SWARMS ‘ ‘ ‘ ‘ ‘ ‘ : : 6

DEV LEAD TIME

attention vs wall-clock

\

DevLT = minutes of dev attention
per trusted change

We care more about dev hours than calendar hours.

1 hour of dev + ~$3 compute
beats 8 hours of dev + $0 compute.

EFFORTLESS_METRICS // AGENTIC_SWARMS

Do more with more

where It's cheap

FROM CHAT TO FLOWS

BABYSITTING
e Dev at keyboard

Chat bubble interface

"Can you refactor this?"

You're the orchestrator

Review chat transcripts

EFFORTLESS_METRICS // AGENTIC_SWARMS

STATEFUL FLOWS

e Fire and forget

Signal = Plan = Build - Gate

Review artifacts, not chats

Persistent context

Automated handoffs

AGENTS AS JUNIORS

SMALL TASKS LARGE CONTEXT SHORT THREADS

.

One focused change per
run

« Clear acceptance criteria
« Bounded scope
« Not “rewrite the system”

Focus beats flexibility

EFFORTLESS_METRICS // AGENTIC_SWARMS

.

Load relevant files
aggressively

e Include ADRs and docs

o Attach test suites

o Files that matter for this
change

Context is cheap; confusion is
expensive

Keep conversations short

e Less context drift
o Cheap retries
o Falil fast, recover faster

If they drift, restart

10

SIX FLOWS, ONE SDLC

The SDLC you already run, encoded as stateful pipelines

Tickets
Incidents

EFFORTLESS_METRICS // AGENTIC_SWARMS 11

SIX FLOWS, ONE SDLC

The SDLC you already run, encoded as stateful pipelines

s o© PLAN
Tickets Specs
Incidents = ADRs

EFFORTLESS_METRICS // AGENTIC_SWARMS 12

SIX FLOWS, ONE SDLC

The SDLC you already run, encoded as stateful pipelines

s o PLAN
Tickets Specs
Incidents e ADRs

EFFORTLESS_METRICS // AGENTIC_SWARMS

9

Code
Tests

13

SIX FLOWS, ONE SDLC

The SDLC you already run, encoded as stateful pipelines

Tickets Code
Incidents Tests

EFFORTLESS_METRICS // AGENTIC_SWARMS

N = GATE

Verify
— Decide

14

SIX FLOWS, ONE SDLC

The SDLC you already run, encoded as stateful pipelines

- GATE
Tickets Code Verify
) N) N Rollout
Incidents Tests Decide

EFFORTLESS_METRICS // AGENTIC_SWARMS 15

SIX FLOWS, ONE SDLC

The SDLC you already run, encoded as stateful pipelines

—_ N - GATE .
Code Verify Rollout Learn
= Tests = Decide = Feedback

Tickets

Incidents

Tonight we zoom in on Build (Flow 3) — where most teams are just pasting prompts into
Copilof.

EFFORTLESS_METRICS // AGENTIC_SWARMS

16

FLOW 3: BUILD LOOP

ADVERSARIAL BUILD LOOP

Design / Spec % Author 2 Critic % Code + Tests

(from Plan flow) micro-iterations 1. Build Receip’r

Most teams stop at “Model, write code.”
We run a writer and a critic fighting over the work.

EFFORTLESS_METRICS // AGENTIC_SWARMS 17

MICRO-LOOP: AUTHOR VS CRITIC

Writes / updates
tests + code

The Author writes or updates tests and code.

EFFORTLESS_METRICS // AGENTIC_SWARMS 18

MICRO-LOOP: AUTHOR VS CRITIC

Writes / updates Attacks against
tests + code spec / tests / behavior

The Critic reads the spec, reads the code, and atftacks if.

EFFORTLESS_METRICS // AGENTIC_SWARMS 19

MICRO-LOOP: AUTHOR VS CRITIC

Writes / updates e Attacks against
tests + code spec / tests / behavior

Nobody grades their own homework.

Critic asks: Did we implement the requirement?
Missing edge cases from BDD? Did we just delete a test?

EFFORTLESS_METRICS // AGENTIC_SWARMS 20

BUILD RECEIPT

build_receipt.json

Receipts are structured evidence the swarm uses to reason about the change.

| read the LLM’s summary and questions, anchored in these receipts.

EFFORTLESS_METRICS // AGENTIC_SWARMS 21

AGENTIC REVIEW BEFORE JUNIORS SEE IT

SANDBOX / BOT-DEV

Signal = Plan = Build (Author=2Critic) > Gate
— PR draft created here

The swarm works in an isolated sandbox...

EFFORTLESS_METRICS // AGENTIC_SWARMS

22

AGENTIC REVIEW BEFORE JUNIORS SEE IT

SANDBOX / BOT-DEV MAIN REPO
Signal - Plan = Build (Author=2Critic) > Gate PR draft from bot-dev
— PR draft created here — Human review - Merge

This all happens before juniors see it.

The PR arrives: shaped, designed, implemented adversarially, and gated — before anyone opens it.

EFFORTLESS_METRICS // AGENTIC_SWARMS 23

THREE FAILURE MODES WE CORRECT

| HALLUCINATION

Invented APls, flags, configs
that look plausible until
they hit reality.

‘ EFFORTLESS_METRICS // AGENTIC_SWARMS

24

THREE FAILURE MODES WE CORRECT

| HALLUCINATION

Invented APls, flags, configs
that look plausible until

| they hit reality.

‘ EFFORTLESS_METRICS // AGENTIC_SWARMS

REWARD HACKING

Editing / deleting tests
or skipping expensive checks
to stay “green’.

25

THREE FAILURE MODES WE CORRECT

HALLUCINATION REWARD HACKING PROCESS CONFABULATION

Invented APls, flags, Editing / deleting tests Describing tests / tools
configs or skipping expensive it “ran” without any
that look plausible until checks evidence

_they hit reality. | to stay “green”. it actually did.

These are not weird edge cases. We correct for them in the architecture.

EFFORTLESS_METRICS // AGENTIC_SWARMS 26

SCHEMA GRAVITY

CONTRACTS . | |
‘ - ‘ ‘ ‘ Aligned output
- Chaotic output | TESTS | | J . P
| | | | POLICIES | or rejected

-

Schema Gravity pulls changes into alignment
with the actual codebase and contracts.

EFFORTLESS_METRICS // AGENTIC_SWARMS

27

OPPOSITIONAL VALIDATION

Writes code, - Attacks proposal, =
proposes changes finds edge cases

The agent trying to get the build to pass
is not the agent deciding whether it passed.

EFFORTLESS_METRICS // AGENTIC_SWARMS

Adjudicates based

on receipts + tools

28

TESTING GUARDRAILS

BDD & SPECS MUTATION ON DIFF

» Requirements and examples as files » Mutate the changed code
(requirements.md, .feature, ADRs) - Bl i rrutarns (v
« Concrete, versioned, tied to tests « Tests that don’t catch bugs
» Not mentioned once in a doc or chat don’t count
. J . J

Tes’rs exist $o the :swarm: knows wherj it broke some’rhing
‘before your users do.

EFFORTLESS_METRICS // AGENTIC_SWARMS ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ 29

GRACEFUL OUTCOMES

success in three shapes

PARTIAL CLARIFY

Task done, checks Here’'s what’s done, Can’t proceed without

passed. — The happy path. what’s left, and why | better input; here are my
stopped. — Honest questions. — Smart
progress. escalation.

The only outcome we don’t accept: “l said | was done and | wasn’t.”

EFFORTLESS_METRICS // AGENTIC_SWARMS 30

FLOW BEHAVIOUR GUARDRAILS

CRITICS ARE FIRST-CLASS ROLES

Every major step has an oppositional agent whose job is to say “no”.

COMPLETE / PARTIAL / CLARIFY — all three are wins.

CLARIFY can open questions on GitHub or route work to another agent.

DEV SANDBOX BOUNDARY
The swarm never pushes straight to main or prod.
Humans still own merge, humans still own deploy.

That’s what lets us be very trusting about what the LLMs do inside the sandbox.

EFFORTLESS_METRICS // AGENTIC_SWARMS 31

FLOW STUDIO

orchestrating the swarm

COMPOSE FLOWS

.

\.

Gemini CLI, Claude Code, pytest, Playwright — tools you already have.

STEPWISE ORCHESTRATION

Signal - Plan = Build - Gate. Watch runs, not YAML.

s
L

ADAPT TO YOUR SDLC

Wire your own gates, engines, and constraints.

EFFORTLESS_METRICS // AGENTIC_SWARMS ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ 32

FLOW STUDIO

preview

Browse flows and runs
Inspect receipts and artifacts
Track agent iterations
Generate flow documentation

This is where the architecture leads when you stop
thinking in “chat”
and start thinking in “flows and gates”.

EFFORTLESS_METRICS // AGENTIC_SWARMS 33

QUESTIONS?

Steven Zimmerman, CPA

@EffortlessSteven
Ex-portfolio CFO - Former Senior Editor at XDA

EFFORTLESS_METRICS // AGENTIC_SWARMS

effortlesssteven.com/DemoSwaxrm

34

