
S Y S T E M A R C H I T E CT U R E B R I E F I N G

Agentic Swarms for Developer
Productivity

Stop Babysitting LLMs, Start Shipping

Steven Zimmerman, CPA

@EffortlessSteven

CODE IS CHEAP; TRUSTED CHANGE IS NOT

TOKENS & CI

Cheap

• Parallel

• Predictable line item

• Infinite scale

SENIOR ATTENTION

Scarce

• Serial

• Expensive

• Finite capacity

EFFORTLESS_METRICS // AGENTIC_SWARMS 2

The bottleneck was always

“can we trust this change?”

The bottleneck was always

“can we trust this change?”

AI just ripped the mask off.

OLD METRICS ARE BROKEN IN AI-NATIVE
REPOS

• PR count and LOC velocity are meaningless in AI-native repos.

• You can maximize both by turning quality down and deleting tests.

• If your metric can be gamed by quietly deleting tests,

it’s not a real metric.

EFFORTLESS_METRICS // AGENTIC_SWARMS 5

COST MODEL: HUMAN VS SWARM

SENIOR DEV

$150–$250/hour (fully loaded)

• Fragmented attention (15–30 min

blocks)

• Serial, finite

SWARM RUN

$1–$5 per Flow 3 run

• 30–90 min grinding in background

• Parallel, scalable

EFFORTLESS_METRICS // AGENTIC_SWARMS 6

DEV LEAD TIME
attention vs wall-clock

DevLT = minutes of dev attention
per trusted change

We care more about dev hours than calendar hours.

1 hour of dev + ~$3 compute
beats 8 hours of dev + $0 compute.

EFFORTLESS_METRICS // AGENTIC_SWARMS 7

Do more with more

where it’s cheap

FROM CHAT TO FLOWS

BABYSITTING
• Dev at keyboard

• Chat bubble interface

• "Can you refactor this?"

• You're the orchestrator

• Review chat transcripts

STATEFUL FLOWS
• Fire and forget

• Signal → Plan → Build → Gate

• Review artifacts, not chats

• Persistent context

• Automated handoffs

EFFORTLESS_METRICS // AGENTIC_SWARMS 9

AGENTS AS JUNIORS

SMALL TASKS

One focused change per
run

• Clear acceptance criteria

• Bounded scope

• Not “rewrite the system”

Focus beats flexibility

LARGE CONTEXT

Load relevant files
aggressively

• Include ADRs and docs

• Attach test suites

• Files that matter for this

change

Context is cheap; confusion is

expensive

SHORT THREADS

Keep conversations short

• Less context drift

• Cheap retries

• Fail fast, recover faster

If they drift, restart

EFFORTLESS_METRICS // AGENTIC_SWARMS 10

SIX FLOWS, ONE SDLC
The SDLC you already run, encoded as stateful pipelines

 SIGNAL

Tickets

Incidents

EFFORTLESS_METRICS // AGENTIC_SWARMS 11

SIX FLOWS, ONE SDLC
The SDLC you already run, encoded as stateful pipelines

 SIGNAL

Tickets

Incidents →

 PLAN

Specs

ADRs

EFFORTLESS_METRICS // AGENTIC_SWARMS 12

SIX FLOWS, ONE SDLC
The SDLC you already run, encoded as stateful pipelines

 SIGNAL

Tickets

Incidents →

 PLAN

Specs

ADRs →

 BUILD

Code

Tests

EFFORTLESS_METRICS // AGENTIC_SWARMS 13

SIX FLOWS, ONE SDLC
The SDLC you already run, encoded as stateful pipelines

 SIGNAL

Tickets

Incidents →

 PLAN

Specs

ADRs →

 BUILD

Code

Tests →

 GATE

Verify

Decide

EFFORTLESS_METRICS // AGENTIC_SWARMS 14

SIX FLOWS, ONE SDLC
The SDLC you already run, encoded as stateful pipelines

 SIGNAL

Tickets

Incidents →

 PLAN

Specs

ADRs →

 BUILD

Code

Tests →

 GATE

Verify

Decide →

DEPLOY

Rollout

EFFORTLESS_METRICS // AGENTIC_SWARMS 15

SIX FLOWS, ONE SDLC
The SDLC you already run, encoded as stateful pipelines

SIGNAL

Tickets

Incidents
→

 PLAN

Specs

ADRs →

 BUILD

Code

Tests →

 GATE

Verify

Decide →

DEPLOY

Rollout →

WISDOM

Learn

Feedback

Tonight we zoom in on Build (Flow 3) — where most teams are just pasting prompts into

Copilot.

EFFORTLESS_METRICS // AGENTIC_SWARMS 16

FLOW 3: BUILD LOOP

INPUT

Design / Spec

(from Plan flow)
→

ADVERSARIAL BUILD LOOP

Author ⇄ Critic

micro-iterations
→

OUTPUT

Code + Tests

1. Build Receipt

Most teams stop at “Model, write code.”

We run a writer and a critic fighting over the work.

EFFORTLESS_METRICS // AGENTIC_SWARMS 17

MICRO-LOOP: AUTHOR VS CRITIC

AUTHOR

Writes / updates

tests + code

The Author writes or updates tests and code.

EFFORTLESS_METRICS // AGENTIC_SWARMS 18

MICRO-LOOP: AUTHOR VS CRITIC

AUTHOR

Writes / updates

tests + code

CRITIC

Attacks against

spec / tests / behavior

The Critic reads the spec, reads the code, and attacks it.

EFFORTLESS_METRICS // AGENTIC_SWARMS 19

MICRO-LOOP: AUTHOR VS CRITIC

AUTHOR

Writes / updates

tests + code
→ ←

CRITIC

Attacks against

spec / tests / behavior

Nobody grades their own homework.

Critic asks: Did we implement the requirement?

Missing edge cases from BDD? Did we just delete a test?

EFFORTLESS_METRICS // AGENTIC_SWARMS 20

BUILD RECEIPT

 build_receipt.json

{

 "requirements": [

 { "id": "R-101", "status": "FULLY_VERIFIED" },

 { "id": "R-102", "status": "PARTIAL" }

],

 "tests_ran": ["test_r101_happy", "test_r102_error"],

 "mutation_score": 82,

 "notes": "edge case for R-102 not covered"

}

Receipts are structured evidence the swarm uses to reason about the change.

I read the LLM’s summary and questions, anchored in these receipts.

EFFORTLESS_METRICS // AGENTIC_SWARMS 21

AGENTIC REVIEW BEFORE JUNIORS SEE IT

SANDBOX / BOT-DEV

Signal → Plan → Build (Author⇄Critic) → Gate
— PR draft created here

The swarm works in an isolated sandbox…

EFFORTLESS_METRICS // AGENTIC_SWARMS 22

AGENTIC REVIEW BEFORE JUNIORS SEE IT

SANDBOX / BOT-DEV

Signal → Plan → Build (Author⇄Critic) → Gate
— PR draft created here

→
MAIN REPO

PR draft from bot-dev
— Human review → Merge

This all happens before juniors see it.

The PR arrives: shaped, designed, implemented adversarially, and gated — before anyone opens it.

EFFORTLESS_METRICS // AGENTIC_SWARMS 23

THREE FAILURE MODES WE CORRECT

HALLUCINATION

Invented APIs, flags, configs

that look plausible until

they hit reality.

EFFORTLESS_METRICS // AGENTIC_SWARMS 24

THREE FAILURE MODES WE CORRECT

HALLUCINATION

Invented APIs, flags, configs

that look plausible until

they hit reality.

REWARD HACKING

Editing / deleting tests

or skipping expensive checks

to stay “green”.

EFFORTLESS_METRICS // AGENTIC_SWARMS 25

THREE FAILURE MODES WE CORRECT

HALLUCINATION

Invented APIs, flags,

configs

that look plausible until

they hit reality.

REWARD HACKING

Editing / deleting tests

or skipping expensive

checks

to stay “green”.

PROCESS CONFABULATION

Describing tests / tools

it “ran” without any

evidence

it actually did.

These are not weird edge cases. We correct for them in the architecture.

EFFORTLESS_METRICS // AGENTIC_SWARMS 26

SCHEMA GRAVITY

Chaotic output
CONTRACTS

TESTS
POLICIES

Aligned output
or rejected

Schema Gravity pulls changes into alignment
with the actual codebase and contracts.

EFFORTLESS_METRICS // AGENTIC_SWARMS 27

OPPOSITIONAL VALIDATION

AUTHOR

Writes code,

proposes changes
→

CRITIC

Attacks proposal,

finds edge cases
→

GATE

Adjudicates based

on receipts + tools

The agent trying to get the build to pass
is not the agent deciding whether it passed.

EFFORTLESS_METRICS // AGENTIC_SWARMS 28

TESTING GUARDRAILS

BDD & SPECS

• Requirements and examples as files

(requirements.md, .feature, ADRs)

• Concrete, versioned, tied to tests

• Not mentioned once in a doc or chat

MUTATION ON DIFF

• Mutate the changed code

• Fail if mutants live

• Tests that don’t catch bugs

don’t count

Tests exist so the swarm knows when it broke something

before your users do.

EFFORTLESS_METRICS // AGENTIC_SWARMS 29

GRACEFUL OUTCOMES
success in three shapes

COMPLETE

Task done, checks

passed. — The happy path.

PARTIAL

Here’s what’s done,

what’s left, and why I

stopped. — Honest

progress.

CLARIFY

Can’t proceed without

better input; here are my

questions. — Smart

escalation.

The only outcome we don’t accept: “I said I was done and I wasn’t.”

EFFORTLESS_METRICS // AGENTIC_SWARMS 30

FLOW BEHAVIOUR GUARDRAILS

CRITICS ARE FIRST-CLASS ROLES

Every major step has an oppositional agent whose job is to say “no”.

GRACEFUL EXITS = SUCCESS

COMPLETE / PARTIAL / CLARIFY — all three are wins.

CLARIFY can open questions on GitHub or route work to another agent.

DEV SANDBOX BOUNDARY

The swarm never pushes straight to main or prod.

Humans still own merge, humans still own deploy.

That’s what lets us be very trusting about what the LLMs do inside the sandbox.

EFFORTLESS_METRICS // AGENTIC_SWARMS 31

FLOW STUDIO
orchestrating the swarm

COMPOSE FLOWS

Gemini CLI, Claude Code, pytest, Playwright — tools you already have.

STEPWISE ORCHESTRATION

Signal → Plan → Build → Gate. Watch runs, not YAML.

ADAPT TO YOUR SDLC

Wire your own gates, engines, and constraints.

EFFORTLESS_METRICS // AGENTIC_SWARMS 32

FLOW STUDIO
preview

EARLY PREVIEW

• Browse flows and runs

• Inspect receipts and artifacts

• Track agent iterations

• Generate flow documentation

This is where the architecture leads when you stop

thinking in “chat”

and start thinking in “flows and gates”.

EFFORTLESS_METRICS // AGENTIC_SWARMS 33

QUESTIONS?

Steven Zimmerman, CPA
@EffortlessSteven

Ex-portfolio CFO · Former Senior Editor at XDA effortlesssteven.com/DemoSwarm

EFFORTLESS_METRICS // AGENTIC_SWARMS 34

